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Abstract. We compare several topologies on the Morse boundary ∂MY
of a CAT(0) cube complex Y . In particular, we show that the two topolo-
gies introduced by Cashen and Mackay are not equal in general and
provide a new description of one of them in the language of cube com-
plexes. As a corollary, we obtain a new approach to tackle the question
whether the visual topology induces a quasi-isometry-invariant topology
on the Morse boundary. This leads to an obstruction to quasi-isometry-
invariance in terms of the behaviour of geodesics under quasi-isometries.
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1. Introduction

Boundaries at infinity are a common tool in the study of large scale geo-
metric properties. When a group acts geometrically on a metric space, one
can study the relations between the group and the boundary of the met-
ric space. A particularly fruitful instance of this is the case of a Gromov-
hyperbolic metric space and its visual boundary. Since any quasi-isometry
between hyperbolic metric spaces induces a homeomorphism on the visual
boundary, we can define the visual boundary of a hyperbolic group as a topo-
logical space up to homeomorphism (see [Gro87]). This is no longer true,
when the group is acting on a non-positively curved space, e. g. a CAT(0)
space. In [CK00], Croke and Kleiner provided an example of a group act-
ing geometrically on two different quasi-isometric CAT(0) spaces which have
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non-homeomorphic visual boundaries. So we cannot associate the visual
boundary as a topological space up to homeomorphism to a group.

Charney and Sultan introduced an alternative boundary for CAT(0) spaces,
the contracting boundary, whose homeomorphism class is invariant under
quasi-isometry (see [CS15]). Cordes generalised their concept to proper ge-
odesic metric spaces Y , introducing the Morse boundary, denoted ∂MY (see
[Cor17]). In either case, this boundary consists of all points in the visual
boundary, which are represented by geodesic rays that have similar prop-
erties to geodesic rays in hyperbolic spaces, indicating that these are the
‘hyperbolic’ directions in the space under consideration (see section 2 for
definitions).

Charney and Sultan equipped the contracting boundary with a quasi-
isometry invariant topology by using a direct limit construction. A similar
construction is done to define a quasi-isometry-invariant topology on the
Morse boundary in greater generality (see [CH17]). This allows us to define
the Morse boundary of a group as the homeomorphism class of such a direct
limit. However, this topology is not first countable in general. Concretely,
this topology is not first countable for the group Z2 ∗ Z, an example also
known as the ‘tree of flats’ (see [Mur18]).

Cashen and Mackay introduced two new, coarser topologies ([CM18]).
Both topologies are based on the notion of fellow-traveling paths, a useful
concept in the study of the visual boundary of hyperbolic spaces. Cashen
and Mackay generalized this concept to proper, geodesic metric spaces to
introduce the topology of fellow-traveling geodesics FG and the topology
of fellow-traveling quasi-geodesics FQ, the second of which is invariant un-
der quasi-isometries and thus allows us to turn the Morse boundary into a
topological invariant of a group (see section 2.1 for definitions of the Morse
boundary, FG and FQ). If a group acts geometrically on a proper geo-
desic metric space Y , then (∂MY,FQ) is metrizable and second countable.
However, Cashen and Mackay’s proof of metrizability relies on the Urysohn
metrisation theorem, whose proofs do not provide a metric that is easy to
compute. Giving an explicit construction of a metrization of FQ that stays
faithful to the geometric context of Morse boundaries is still an open prob-
lem at the time of writing.

In this article, we restrict our attention to the Morse boundary of CAT(0)
cube complexes. Cube complexes were introduced by Gromov in [Gro87]
and have become a central object in geometric group theory over the last
decade due to their fruitfulness in solving problems in group theory and
low-dimensional topology and due to the fact that many interesting groups
are cubulable, i. e. they act properly and cocompactly on a CAT(0) cube
complex. The class of groups that are cubulable includes Right-angled
Artin groups, hyperbolic 3-manifold groups ([BW12]), most non-geometric 3-
manifold groups ([PW14], [HP15], [PW18]), small cancelation groups ([Wis04])
and many others. Cubulated groups played a key role in Agol’s and Wise’s
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proof of the virtual Haken and virtual fibered conjecture ([Wis11], [Ago13]).

When considering a CAT(0) cube complex Y , one can define the following
topology on the visual boundary: Fix a vertex o ∈ Y as a base point and let
h1, . . . , hn be distinct hyperplanes in Y . Denote the visual boundary of Y
by ∂∞Y . Define the set

Vo,h1,...,hn := {ξ ∈ ∂∞Y |The unique geodesic representative of ξ based
at o crosses the hyperplanes h1, . . . , hn.}.

The collection {Vo,h1,...,hn}n,h1,...,hn forms the basis of a topology on ∂∞Y .
We denote the subspace topology on the Morse boundary induced by this
topology by HYP.

A comparison of FG and HYP yields

Theorem 1.1. Let Y be a uniformly locally finite CAT(0) cube complex.
Then the topologies FG and HYP coincide on the Morse boundary.

It is shown in [CM18] that FG ⊂ FQ and a sufficient condition for equality
is given. We show that equality does not hold in general.

Theorem 1.2. There exists a uniformly locally finite CAT(0) cube complex
Y that admits a geometric action by a group and FG 6= FQ on ∂MY .

The counter-example used to prove Theorem 1.2 is the same Right-angled
Artin group that was already used by Croke and Kleiner to show that the
visual boundary is not a quasi-isometry invariant for CAT(0) spaces (see sec-
tion 3 for details). Our construction to prove that this is a counter-example
shows in particular that no minor adjustments to Cashen and Mackays con-
cept of fellow-traveling will change the inequality of FG and FQ.

Combining Theorem 1.1 with results from [CM18] and [BF18a] (see section
5 for details), we obtain

Corollary 1.3. Let Y be a uniformly locally finite CAT(0) cube complex.
Then the following topologies on ∂MY coincide:

(1) The subspace topology induced by the visual topology
(2) FG
(3) HYP
(4) The topology induced by the Roller boundary.

Note that, on ∂∞Y , the visual topology and the topology generated by
the sets Vo,h1,...,hn do not coincide in general; R2 with its standard cubulation
provides an easy counter example.

In [Cas16], Cashen showed that the subspace topology induced by the
visual topology is not invariant under quasi-isometries in general. Since his
counter examples do not admit a cocompact action by isometries, he raised
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the question whether the Morse boundary with the visual topology is invari-
ant under quasi-isometry when the spaces in question admit a cocompact
action by isometries. Corollary 1.3 provides us with a new tool to study this
question for cubulable groups.

One necessary condition for the quasi-isometry invariance of FG is that it
is independent of the choice of base point. It turns out that FG (and thus
the other three topologies in Corollary 1.3) are independent of the choice of
base point if the metric space Y is CAT(0). We provide a counter example
for non-CAT(0) spaces. In fact, our counter example will be a finitely gen-
erated small cancellation group.

Restricting our attention to a special class of CAT(0) cube complexes
(which includes the universal covering of the Salvetti complex of any RAAG)
allows us to give an explicit construction of a metric on ∂MY that induces
the topology FG. This metric depends on the choice of a base point. We
show that the cross ratio induced by this metric also depends on the choice
of a base point and we will compare these cross ratios to the one introduced
in [BFIM18].

The remainder of the paper is organised as follows. In section 2, we recall
basic notions and facts about Morse boundaries, CAT(0) cube complexes
and RAAGs. We prove that for CAT(0) spaces, FG is independent of the
choice of base point and provide a counter example for non-CAT(0) spaces.
In section 3, we will prove Theorem 1.1 and Theorem 1.2. In section 4, we
introduce a metric on ∂MY that induces the topology FG for a special class
of CAT(0) cube complexes and compare this metric to notions introduced in
[BFIM18]. In section 5, we will discuss Corollary 1.3 and finish with a short
analysis of the question whether HYP is invariant under quasi-isometries.

The author is grateful to Ruth Charney, Matthew Cordes, Dominik Gru-
ber, Yannick Krifka, Viktor Schroeder, Alessandro Sisto and Davide Spriano
for many discussions and helpful advice. The author thanks Jonas Beyrer
and Elia Fioravanti for pointing out a mistake in an earlier version of this pa-
per. The author also thanks Christopher Cashen and John Mackay for their
comments on Proposition 2.2 and for providing Example 2.6 and Matthew
Cordes for providing figure 3.

2. Preliminaries

2.1. The Morse boundary. For a more thorough introduction to Morse
boundaries and their properties, see [Cor17].

Let (Y, d) be a proper, geodesic metric space. Given a subset S ⊂ Y and
R ≥ 0, we denote the R-neighbourhood of S by

NR(S) := {y ∈ Y |∃s ∈ S : d(y, s) ≤ R}.
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The Hausdorff distance between two subsets S, S′ ⊂ Y is defined to be
dHaus(S, S

′) := inf{r|S ⊂ Nr(S
′), S′ ⊂ Nr(S)}. Two quasi-geodesic rays γ,

γ′ are called asymptotically equivalent, if they have finite Hausdorff distance.
Suppose Y is a CAT(0) space. The visual boundary ∂∞Y of (Y, d) is

defined to be the set of all equivalence classes of geodesic rays. Equivalently,
one may fix a base point o and consider equivalence classes of geodesic rays
that start at o.

We now drop the assumption that Y is CAT(0). LetN : R≥1×R≥0 → R≥0

be a function. A set S ⊂ Y is called N -Morse if ∀K ≥ 1, ∀C ≥ 0, every
(K,C)-quasi-geodesic γ whose endpoints lie in S is contained in theN(K,C)-
neighbourhood of S, i. e. γ ⊂ NN(K,C)(S). We call a set Morse, if there exists
a function N , such that the set is N -Morse. We define the Morse boundary
∂MY to be the set of all equivalence classes of Morse geodesic rays. Note
that we could instead consider the set of all equivalence classes of Morse
quasi-geodesic rays. By Lemma 5.2 in [CM18], every Morse quasi-geodesic
ray is asymptotically equivalent to a Morse geodesic ray. This implies that
every Morse quasi-geodesics represents a point in the Morse boundary and
we will think of Morse quasi-geodesics as representing points in ∂MY .

There is an equivalent characterisation of the Morse-property. Let ρ :
R≥0 → R≥0 be a non-decreasing, eventually non-negative function, which is
sublinear, i. e. limr→∞

ρ(r)
r = 0. Consider a closed set S ⊂ Y and y ∈ Y .

We denote the set of closest points to y in S by πS(y) and call πS the closest
point projection onto S, even though πS is, strictly speaking, not a map from
Y to S. A closed set S ⊂ Y is called ρ-contracting, if for all x, y ∈ Y�S
with d(x, y) < d(S, y), we have that diam(πS(x), πS(y)) ≤ ρ(d(S, y)). In
other words, for any point y ∈ Y�S, the projection of the largest open ball
B, centered at y that does not intersect S, onto S has diameter bounded
by ρ(r) where r denotes the radius of B. We call a closed set sublinearly
contracting, if it is ρ-contracting for some non-decreasing, eventually non-
negative, sublinear function ρ.

In [ACGH17], the authors proved that for every function N , there exists
a function ρ, depending only on N , such that any closed N -Morse set is
ρ-contracting. Conversely, for every ρ there exists an N , such that every
closed ρ-contracting set is N -Morse (cf. Theorem 1.4, Proposition 4.1 and
Proposition 4.2 in [ACGH17]). Thus, we see that the contracting boundary,
which is defined to be the set of all equivalence classes of quasi-geodesics, that
admit a ρ-contracting representative, is the same as the Morse boundary. If
Y is CAT(0), a geodesic is Morse if and only if there exists a constant D
such that the geodesic is D-contracting (cf. [BF09, Sul14]). Therefore, we
see that in CAT(0) spaces, geodesics are sublinearly contracting if and only
if they are contracting.

Using the equivalence between Morse and sublinearly contracting, we ob-
tain the following results. By Lemma 6.3 in [ACGH17], any set in Y that has
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bounded Hausdorff-distance from an N -Morse set is N ′-Morse for some func-
tion N ′ which depends only on N and the Hausdorff-distance between the
two sets. In particular, all representatives of a point in the Morse boundary
are Morse. By Proposition 2.4 in [Cor17], we know that for anyN -Morse geo-
desic ray γ and any geodesic ray γ′ asymptotic to γ, their Hausdorff-distance
is bounded from above by a constant depending only on N and the distance
of their starting points. In particular, for any ξ ∈ ∂MY and any bounded
set B ⊂ Y , there exists some N , such that all geodesic representatives of ξ
that start in B are N -Morse.

Note that so far, we have only introduced the Morse boundary as a set.
We will now recall some constructions and results from [CM18] in order to
define the topologies FG and FQ. We begin with their key-observation
on the divergence-behaviour of quasi-geodesics from sublinearly contracting
sets. Given a sublinear function ρ, K ≥ 1 and C ≥ 0, we define

κ(ρ,K,C) := max(3K2, 3C, 1 + inf{R | ∀r ≥ R, ρ(r) ≤ 3K2r})
and

κ′(ρ,K,C) := (K2 + 2)(2κ(ρ,K,C) + C).

Proposition 2.1 (Corollary 4.3 in [CM18]). Let Z be ρ-contracting and let β
be a continuous (K,C)-quasi-geodesic ray with d(β0, Z) ≤ κ(ρ,K,C). There
are two possibilities:

(1) The set {t|d(βt, Z) ≤ κ(ρ,K,C)} is unbounded and β is contained in
the κ′(ρ,K,C)-neighbourhood of Z.

(2) There exists a last time T0 such that d(βT0 , Z) = κ(ρ,K,C) and:

∀t, d(βt, Z) ≥ 1

2K
(t− T0)− 2(C + κ(ρ,K,C)).

This motivates the following definition. Fix o ∈ Y . Let ξ ∈ ∂MY . Since ξ
is in the contracting boundary, there exists ρ such that all geodesic represen-
tatives of ξ based at o are ρ-contracting. Choose one geodesic representative
γ ∈ ξ that is based at o. Let R ≥ 0. We say that a (K,C)-quasi-geodesic β
fellow-travels along γ for distance R, if β ∩Nκ(ρ,K,C)(γ�BR(o)) 6= ∅, where
BR(o) denotes the open ball of radius R centered at o. We define the set

Uo,R(ξ) := {η ∈ ∂MY | For all ρ, K, C, such that γ is ρ-contracting, all
(K,C)-quasi-geodesic representatives of η that are
based at o fellow-travel along γ for distance R.}.

Thinking of geodesics as (1, 0)-quasi-geodesics, we analogously define

Vo,R(ξ) := {η ∈ ∂MY | For all ρ, such that γ is ρ-constracting, all
geodesic representatives of η that are
based at o fellow-travel along γ for distance R.}.
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Cashen and Mackay show that the two families {Uo,R(ξ)}R,ξ and {Vo,R(ξ)}R,ξ
are neighbourhood bases of two topologies (Proposition 5.5 and 7.1 in [CM18]).
We denote the topology induced by {Uo,R(ξ)}R,ξ by FQ and the topology
induced by {Vo,R(ξ)}R,ξ by FG. In other words, a set U is open in FQ if and
only if for every point ξ ∈ U there exists some R > 0, such that Uo,R(ξ) ⊂ U .
The analogous statement defines FG.
Proposition 2.2. FQ is independent of the choice of the base point o. If Y
is CAT(0), then FG is also independent of the choice of o.

While the first part of this proposition was proven in Proposition 5.11 of
[CM18], we need to provide a proof for the second part. Before we do so, we
state a key technical lemma from [CM18].

Lemma 2.3 (Lemma 4.6 of [CM18]). Let α be a ρ-contracting geodesic ray
and let β be a continuous (K,C)-quasi-geodesic ray with α(0) = β(0) = o.
Given some R and J , suppose there exists a point x ∈ α with d(x, o) ≥ R
and d(x, β) ≤ J . Let y be the last point on the subsegment of α between o
and x such that d(y, β) = κ(ρ,K,C). There is a constant M ≤ 2 and a
function λ(φ, p, q) defined for sublinear φ, p ≥ 1 and q ≥ 0 such that λ is
monotonically increasing in p and q and

d(x, y) ≤MJ + λ(ρ,K,C).

Thus,
d(o, y) ≥ R−MJ − λ(ρ,K,C).

We reformulate this Lemma in a way that will be a bit more handy to
use.

Corollary 2.4. Let α be a ρ-contracting geodesic ray based at o, K ≥ 1,
C ≥ 0, J ≥ 0, r ≥ 0. Then, there exists a constant R(ρ,K,C, r, J) such that
every (K,C)-quasi-geodesic ray β based at o satisfying (∗) is fellow-traveling
along α for at least distance r.

(∗) There exists a point p ∈ α satisfying d(o, p) ≥ R(ρ,K,C, r, J) and
d(β, p) ≤ J .

This corollary is obtained by thinking of r = d(o, y). Then, Lemma 2.3
implies that, if we find p ∈ α such that d(o, p) ≥ R(ρ,K,C, r, J) := r +
2J + λ(ρ,K,C), then we find y ∈ α such that d(o, y) ≥ r, implying that β
fellow-travels along α for distance r.

Note that condition (∗) itself can be thought of as a version of fellow-
traveling, where the quasi-geodesic β is J-fellow-traveling along the geodesic
α for distance R = R(ρ,K,C, r, J) iff β ∩NJ(α�Bo(R)) 6= ∅.
Proof of Proposition 2.2. For FQ, this has been proven in [CM18]. Suppose
that Y is CAT(0). Let o, o′ ∈ Y , ξ ∈ ∂MY . There exists a sublinear
function ρ, such that all geodesic representatives of ξ based at o or o′ are
ρ-contracting. To distinguish the neighbourhood-bases with respect to o and
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o′, we will denote the neighbourhoods by Uo,R(ξ) and Uo′,R(ξ) respectively.
Let α ∈ ξ be a geodesic based at o and α′ ∈ ξ a geodesic based at o′.

Let R ≥ 0. We need to find R′ such that Uo′,R′(ξ) ⊂ Uo,R(ξ). Put

R′ := R
(
ρ, 1, 0, R, [κ′(ρ, 1, d(o, o′)) + κ(ρ, 1, 0) + d(o, o′)]

)
+κ′(ρ, 1, d(o, o′))+d(o, o′)

using the function R(·, ·, ·, ·, ·) from Corollary 2.4. We claim that Uo′,R′(ξ) ⊂
Uo,R(ξ).

Let η ∈ Uo′,R′(ξ), β ∈ η a geodesic representative based at o and β′ ∈ η a
geodesic representative based at o′. We know that β′∩Nκ(ρ,1,0)(α

′�BR′(o)) 6=
∅ and thus, there exist points p′ ∈ α′�BR′(o) and q′ ∈ β′ such that d(p′, q′) ≤
κ(ρ, 1, 0). Since Y is CAT(0) and β and β′ are asymptotically equivalent, the
distance function d(β(t), β′(t)) is convex and bounded. We conclude that it
is bounded by d(o, o′). In particular, we find q ∈ β with d(o, q) = d(o′, q′)
and d(q, q′) ≤ d(o, o′). Consider a geodesic δ from o to o′. The concatena-
tion δ ∗ α′ is a (1, d(o, o′))-quasi-geodesic representative of ξ, based at o. By
Corollary 4.3 in [CM18], every point in δ ∗ α′ is κ′(ρ, 1, d(o, o′))-close to α.
In particular, there exists a point p ∈ α such that d(p, p′) ≤ κ′(ρ, 1, d(o, o′))
and

d(o, p) ≥ d(o′, p′)− κ′(ρ, 1, d(o, o′))− d(o, o′)

≥ R(ρ, 1, 0, R, κ′(ρ, 1, d(o, o′)) + κ(ρ, 1, 0) + d(o, o′)).

Overall, we find that d(p, q) ≤ κ′(ρ, 1, d(o, o′)) + κ(ρ, 1, 0) + d(o, o′) and
d(o, p) ≥ R(ρ, 1, 0, R, κ′(ρ, 1, d(o, o′)) + κ(ρ, 1, 0) + d(o, o′)). Using Corollary
2.4 with J = κ′(ρ, 1, d(o, o′))+κ(ρ, 1, 0)+d(o, o′), we conclude that β is fellow-
traveling along α for distance at least R. Since β was an arbitrary geodesic
representative of η ∈ Uo′,R′(ξ) based at o, we conclude that Uo′,R′(ξ) ⊂
Uo,R(ξ). By symmetry, this implies that both neighbourhood-bases induce
the same topology FG.

�

Remark 2.5. Note that the assumption that Y is CAT(0) is only used to
find an upper bound for dHaus(β, β′) that does not depend on the contracting
functions of β and β′. This is a weaker assumption than being CAT(0). For
example, it is sufficient, if the distance function d(β(t), β′(t)) is convex for
any two geodesics β, β′ in Y . Spaces with this convexity property are also
called Busemann spaces. Since we will focus on CAT(0) spaces in the rest of
the paper, we will not discuss this more general situation.

Note that FG is not base point invariant in general. What follows is a
counter example.

Example 2.6. Let R be a geodesic ray (i. e. a copy of [0,∞)). For i ≥ 1,
attach geodesic rays Ri to the points i ∈ R. We will distinguish between the
real number x in R and the same real number in Ri by writing R(x) and
Ri(x) respectively. Further, we denote o := R(0). Let f be a superlinear
function, i. e. limr→∞

r
f(r) = 0, such that f is injective and f(i) > i for all

i ∈ N. Glue intervals of length 1+ i+6f(i) into our space by attaching their
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endpoints to o and Ri(6f(i)). Denote these intervals by Si. For 0 ≤ i ≤ j,
denote the interval of length i in Sj that starts at o by Ii,j . For i fixed, we
glue together Ii,j for all j ≥ i. We denote this space by Y and denote the
point in all Si of distance 1 from o by o′ (all these points have been identified
by the gluing). The length of each ray that we used to build Y induces a
shortest-path-metric on Y .

We claim that R is a ρ-contracting geodesic ray. Indeed, a ball in Y�R,
centered at a point p ∈ Ri ∪ Si with d(p,R) ≥ 3f(i) gets projected into
the set {o,R(i)} which has diameter i, while a ball centered at a point
p ∈ Ri ∪ Si with d(p,R) ≤ 3f(i) is sent to a single point. Therefore, R is
ρ-contracting for ρ = 1

3 · f−1. Since f is superlinear, its inverse function is
sublinear. Further, all Ri are sublinearly contracting as well, because the
projection of Y�Ri onto Ri sends everything onto two points in Ri. We
write κ := κ(ρ, 1, 0).

Consider the neighbourhoods of [R] ∈ ∂MY in FG with respect to o and
o′. With respect to o, the (unique) geodesic representative of [Ri] stays κ-
close to R for distance i + κ. Thus, for every r > 0, Uo,r([R]) contains [Ri]
for all i > r − κ.

With respect to o′, however, the geodesic representative of [Ri] stays
κ-close to the geodesic representative of [R] only for distance κ. Thus,
Uo′,r([R]) = {[R]} for r > κ. We conclude that FG is not base point in-
dependent.

One may ask whether FG is base point invariant when the space Y admits
a cocompact group action by isometries. It turns out that this is not the
case either. The geometry displayed above can be embedded into a finitely
generated, infinitely presented small cancellation group. This is done as
follows: The space Y above can be equipped with the structure of a graph
all whose edges have length 1. From now on, we consider Y equipped with
this graph structure. We can label the edges of this graph with letters of the
alphabet S := {a, b1, b2, b3, b4, b5, b6, c, d1, d2, d3, d4, d5, d6} such that:

(1) the geodesic ray R spells the word a∞,
(2) the geodesic ray Ri spells b

f(i)
1 b

f(i)
2 b

f(i)
3 b

f(i)
4 b

f(i)
5 b

f(i)
6 c∞,

(3) the segment Si starting at o spells cib1d
f(i)
6 d

f(i)
5 d

f(i)
4 d

f(i)
3 d

f(i)
2 d

f(i)
1 .

This labeling allows us to embed the graph Y into the Cayley-graph
Cay(G,S) of the group
G :=<a, b1, b2, b3, b4, b5, b6, c, d1, d2, d3, d4, d5, d6

|i ∈ N, aibf(i)
1 b

f(i)
2 b

f(i)
3 b

f(i)
4 b

f(i)
5 b

f(i)
6 d

−f(i)
1 d

−f(i)
2 d

−f(i)
3 d

−f(i)
4 d

−f(i)
5 d

−f(i)
6 b−1

1 c−i > .

generated by the labeled graph Y (cf. Definition 1.1 in [Gru15]). We claim
that Y isometrically embeds into Cay(G,S) such that R and Ri are still
sublinearly contracting and the topological behaviour on the boundary re-
mains unchanged. We first note that G is a small cancellation group. This
follows from the fact that, for i < j, the largest shared subword of the i-th
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[R]o

o′

[R1] [R2] [R3] [R4]

R1(6f(1))

R2(6f(2))

R3(6f(3))

R(1) R(2) R(3) R(4)

S1

S2

S3

S4

Figure 1. The graph Y . The beginning of the segments
Si are all identified. For every i, the segments [o,R(i)],
[R(i), Ri(6f(i))], Si form a cycle, where the length of [o,R(i)]
is significantly shorter than the length of the other two seg-
ments, since f is superlinear. This forces R to be sublinearly
contracting.

and j-th relation in the presentation above has length 2f(i), while both rela-
tions have length greater than 12f(i). The same argument tells us that any
two distinct, simple, closed paths γ, γ′ in the labelled graph Y that share
a common subpath p satisfy l(p) ≤ 1

6 l(γ). By definition, this means that
Y satisfies the property Gr′(1

6) (cf. Definitions 1.2 & 1.3 in [Gru15]). By
Theorem 5.10 in [Gru15], this implies that Y embeds isometrically into the
Cayley-graph Cay(G,S) induced by Y . In particular, R and Ri are sent to
geodesic rays in Cay(G,S). Theorem 4.1 in [ACGH18] states that for any
graph that satisfies Gr′(1

6), its embedding into the Cayley-graph induced by
Y has the property that a geodesic in Cay(G,S) is sublinearly contracting
if and only if it is uniformly locally contracting in Y . Since R and Ri are
sublinearly contracting in Y , we can use the theorem and conclude that their
embedded images in Cay(G,S) are sublinearly contracting. Therefore, they
induce points in the Morse boundary of Cay(G,S) and since the embedding
of Y is isometric, the topological properties that these boundary points have
in Y carry over. We conclude that FG exhibits the same dependence on base
points in ∂MCay(G,S) as in ∂MY .
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2.2. CAT(0) cube complexes. For an in-depth introduction to CAT(0)
cube complexes, see [Sag14]. We will focus on fixing notation and recalling
some definitions and facts that will be used in the remainder of the paper.

Let Y be a simply connected cube complex satisfying Gromov’s no-4-
condition; see 4.2.C in [Gro87] and Chapter II.5 in [BH99]. Unless specified
otherwise, all points v ∈ Y are implicitly understood to be vertices and all
subsets of Y are contained in the 0-skeleton; this applies in particular to
edges and cubes. The link of v (denoted lk(v)) is the simplicial complex
consisting of an (n − 1)-simplex for every n-cube of Y based at v, with the
same face relations. We denote by deg(v) the number of edges of Y that
contain v.

The Euclidean metrics on the cubes of Y fit together to yield a CAT(0)
metric on Y . We can however also endow each cube [0, 1]k ⊆ Y with the
restriction of the `1 metric of Rk and consider the induced path metric
d`1(−,−). We refer to d as the combinatorial metric (or `1 metric). In
finite dimensional cube complexes, the CAT(0) and combinatorial metrics
are bi-Lipschitz equivalent and complete. In particular, if all cubes in a cube
complex have dimension ≤ n, then the CAT(0) and combinatorial metrics
are
√
n-bi-Lipschitz equivalent.

The combinatorial metric allows us to introduce combinatorial geodesics,
which are geodesics between vertices of Y with respect to the combinatorial
metric that are fully contained in the 1-skeleton of Y . If all cubes in Y
have dimension at most n, every combinatorial geodesic is a (

√
n, 0)-quasi-

geodesic. Combinatorial geodesics are fully determined by the sequence of
hyperplanes they cross.

We will refer to simply connected cube complexes satisfying Gromov’s no-
4-condition as CAT(0) cube complexes, regardless of whether we consider it
equipped with the CAT(0) metric or the combinatorial metric. In order to
distinguish geodesics in the CAT(0) metric from the `1-metric, we will call
the former geodesics, while the latter will only appear in the form of the
combinatorial geodesics introduced above.

We call a CAT(0) cube complex Y locally finite, if for every vertex v ∈ Y ,
there are at most finitely many edges incident to v. We say Y is uniformly
locally finite if there exists a constant ν, such that for every vertex v ∈ Y ,
there are at most ν many edges incident to v. We say that ν is an upper
bound for the valence of all vertices in Y . We say that a CAT(0) cube
complex has uniformly bounded dimension, if there exists a constant B such
that every cube in Y has dimension at most B.

Let W(Y ) and H(Y ) be the set of all hyperplanes and of all halfspaces
of Y respectively. Given a halfspace s, denote the other halfspace bounded
by the same hyperplane by s∗. Given a hyperplane h, we call a choice of
halfspace bounded by h an orientation of h. We sometimes denote the two
orientations of h by {h+, h−}. The set H is endowed with the order relation
given by inclusions; the involution ∗ is order reversing. The triple (H,⊆, ∗)
is thus a pocset (see [Sag14]).
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Two hyperplanes are called transverse if they intersect. Note that every
intersection h1∩· · ·∩hk of pairwise transverse hyperplanes h1, . . . , hk inherits
a CAT(0) cube complex structure. Its cells are precisely the intersections
h1∩· · ·∩hk∩c for any cube c ⊆ Y . Alternatively, h1∩· · ·∩hk can be viewed
as a subcomplex of the cubical subdivision of Y .

Analogously, two halfspaces s, s′ ∈ H are called transverse, if their bound-
ing halfspaces are transverse. Equivalently, they are transverse if and only
if the four intersections s ∩ s′, s ∩ s′∗, s∗ ∩ s′, s∗ ∩ s′∗ are non-empty. A
hyperplane is transverse to a halfspace s if it is transverse to the hyperplane
that bounds s.

Given two subsets U , V ⊂ Y , we define W(U, V ) to be the set of all
hyperplanes that separate U from V . Given a (combinatorial) geodesic γ,
we write W(γ) for the set of hyperplanes crossed by γ.

Given a path γ in Y , the length of γ with respect to either metric can be
estimated from below by #W(γ)− 1.

Let e be an edge in Y . We denote the hyperplane crossed by e by h(e).
We say that a hyperplane h is adjacent to a vertex v ∈ Y if h = h(e) for an
edge incident to v.

We say that Y has no free vertices if for all vertices v and all edges e
incident to v, there exists an edge e′ incident to v, such that h(e)∩h(e′) = ∅.

Suppose, Y has no free vertices. Given an oriented edge e we can extend
it to a geodesic segment in Y as follows: The orientation provides us with an
endpoint v of e. Choose an edge e′ incident to v such that h(e′) ∩ h(e) = ∅.
The concatenation e∗e′, where we interpret e and e′ as paths with arc-length
parametrization, is a geodesic in Y . We say that we extend e by e′. Given a
concatenation of edges e1 ∗ · · · ∗ en such that h(ei) ∩ h(ej) = ∅ for all i 6= j,
we can extend it to to a geodesic of length n + 1 by adding an edge en+1

incident to the endpoint of e1 ∗ · · · ∗ en that does not intersect h(ei) for any
1 ≤ i ≤ n. This way, we can extend any oriented edge to a geodesic of length
n+ 1 by choosing a sequence of edges e1, . . . , en, which are mutually disjoint
and do not intersect with e. We say that we extend the oriented edge (or
path) e by n many steps to the geodesic e ∗ e1 ∗ · · · ∗ en. Note that – in
general – we may have several choices to extend e by n many steps. If e
is contained in a flat F , i. e. an embedding of R2 with standard cubulation
that respects the cube complex structure, we have a unique way to extend
the oriented edge e by n many steps inside the flat F (since there is always a
unique edge incident to the endpoint of the path that does not intersect any
of the preceding hyperplanes). We say that we extend e by n many steps in
the flat F .

Given y ∈ Y , we denote by σy ⊆ H the set of all halfspaces containing
the point y. It satisfies the following properties:

(1) given any two halfspaces s, s′ ∈ σy, we have s ∩ s′ 6= ∅;
(2) for any hyperplane h ∈ W, a side of h lies in σy;
(3) every descending chain of halfspaces in σy is finite.
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Subsets σ ⊆ H satisfying (1)–(3) are known as DCC ultrafilters. We refer to
a set σ ⊆ H satisfying only (1) and (2) simply as an ultrafilter. We will also
think of an ultrafilter as a map that associates to every hyperplane one of
its orientations.

Let ι : X → ∏
h∈W{h+, h−} denote the map that takes each point y to

the set σy. Its image ι(Y ) is precisely the collection of all DCC ultrafilters.
Endowing

∏
h∈W{h+, h−} with the product topology, we can consider the

closure ι(Y ), which coincides with the set of all ultrafilters. Equipped with
the subspace topology, this is a compact Hausdorff space known as the Roller
compactification of Y ; we denote it by Y .

The Roller boundary ∂RY is defined as the difference Y \ ι(Y ). If Y is
locally finite, ι(Y ) is open in Y and ∂RY is compact; however, this is not
true in general. We prefer to imagine ∂RY as a set of points at infinity,
represented by combinatorial geodesics in Y , rather than a set of ultrafilters.
We will therefore write y ∈ ∂RY for points in the Roller boundary and
employ the notation σy ⊆ H to refer to the ultrafilter representing y. We
say that a hyperplane h separates two points x and y in the Roller boundary
if σx and σy do not contain the same halfspace bounded by h. In other
words, they induce opposite orientation on h.

Given two points x, y ∈ ∂RY , we say they lie in the same component if and
only if there are only finitely many hyperplanes that separate x from y. This
defines an equivalence relation on ∂RY and partitions the Roller boundary
into equivalence classes, called components. Each component inherits the
structure of a CAT(0) cube complex whose hyperplanes are a strict subset
of the set of hyperplanes of Y . We say that a hyperplane k ∈ W(Y ) intersects
a component C whenever it corresponds to a hyperplane in C. Note that for
any two hyperplanes h, k that intersect a component C, there exist infinitely
many hi ∈ W(Y ) that intersect both h and k.

Let Y have uniformly bounded dimension. A point x ∈ ∂RY is called
Morse if it admits a combinatorial geodesic representative that is Morse.
Denote the set of all Morse points in the Roller boundary of Y by ∂R,MY .
By [BF18a], there exists a surjective map Φ : ∂R,MY → ∂MY , which sends
any combinatorial geodesic representative [γ] ∈ ∂R,MY to the point [γ] in
the Morse boundary represented by the quasi-geodesic γ.

Let n ∈ N0. We call two hyperplanes h, h′ n-strongly separated, if they
are disjoint and there are at most n many hyperplanes that intersect both h
and h′. For n = 0 we simply write strongly separated.

In [CS15], Charney and Sultan characterized Morse geodesics in uniformly
locally finite CAT(0) cube complexes as follows:

Theorem 2.7 (Theorem 4.2 in [CS15]). Let Y be a uniformly locally finite
CAT(0) cube complex. There exist r > 0, n ≥ 0 (depending only on D and
the maximal valence ν), such that a geodesic ray γ in Y is D-contracting if
and only if γ crosses an infinite sequence of hyperplanes h1, h2 . . . at points
yi := γ ∩ hi satisfying
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(1) hi, hi+1 are n-separated and
(2) d(yi, yi+1) < r.

Remark 2.8. Consider a Morse geodesic ray γ in a uniformly locally finite
CAT(0) cube complex Y . This geodesic ray induces a consistent orientation
of hyperplanes and thus a point y ∈ ∂RY . The theorem by Charney-Sultan
implies that the component C ⊂ ∂RY that contains y is a bounded cube
complex. If it were unbounded, we would find for any N > 0 a time T , such
that any two hyperplanes crossed by γ|[T,∞), are not N -strongly separated
(no hyperplane crossed by γ can intersect C, as γ is a geodesic and moves
infinitely far away from any hyperplane it crosses). We conclude that the
preimage Φ−1([γ]) of Morse points [γ] ∈ ∂MY is always a bounded compo-
nent.

2.3. Right-angled Artin groups. Let Γ be a finite, undirected graph with
no multiple edges and no loops of length 1. We denote its vertices by VΓ and
its edges by EΓ. The Right-angled Artin group (RAAG) associated to Γ is
defined by

AΓ := 〈VΓ|[vi, vj ] for all (vi, vj) ∈ EΓ〉
We now build a cube complex whose fundamental group is AΓ. Its uni-

versal covering YΓ will inherit a cube complex structure and will be CAT(0).
Furthermore, AΓ acts properly, cocompactly by cube-automorphisms on YΓ.
We start with one vertex and glue both endpoints of VΓ-many edges to this
vertex. We label the edges by the vertices vi ∈ VΓ. Whenever we have ver-
tices vi1 , . . . , vik such that (vij , vi′j ) ∈ EΓ, we glue a k-cube along the edges
vi1 , . . . vik in such a way that the k-cube is glued to become a k-dimensional
torus (i. e. parallel edges of the k-cube are all glued to the same edge in the
complex). The resulting cube complex is called the Salvetti complex of Γ.
We denote its universal covering by YΓ. The following statement is proven
during the proof of Theorem 5.1 in [CH17].

Proposition 2.9 ([CH17]). Given a finite, undirected graph Γ, any con-
tracting geodesic ray in YΓ crosses an infinite sequence of hyperplanes as in
Theorem 2.7, where all hyperplanes in the sequence are strongly separated.

Remark 2.10. In [Fer18, FLM18], the notion of a regular point was in-
troduced, which can be defined as follows (cf. Proposition 7.5 in [Fer18]):
A point ξ ∈ ∂RY is called regular if the ultrafilter σξ contains an infinite
chain h0 ( h1 ( . . . such that the corresponding hyperplanes w0, w1 . . .
are strongly separated. From the results above, it follows that the Morse
boundary of a RAAG is contained in the image of the regular points under
the map Φ.

3. Comparing FG and FQ
Let Y be a CAT(0) cube complex and fix a base point o ∈ Y for the rest

of this section. By Cashen-Mackay, the contracting boundary ∂MY carries
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the topologies of fellow-traveling geodesics – FG – and of fellow-traveling
quasi-geodesics – FQ. We will introduce a third topology and then show
that it coincides with FG but differs from FQ in general.

Let h1, . . . , hn be distinct hyperplanes in Y . Define the set

Uo,h1,...,hn := {ξ ∈ ∂MY |The unique geodesic representative of ξ based at o
crosses the hyperplanes h1, . . . , hn.}.

It is easy to see that the collection {Uo,h1,...,hn}n,h1,...,hn is a basis of the
topology HYP introduced in section 1.

Proposition 3.1. Let Y be a uniformly locally finite CAT(0) cube complex,
X its contracting boundary as a set. Then FG = HYP on X.

Corollary 3.2. HYP is independent of the choice of base point.

Proof of Corollary 3.2. This follows from Proposition 2.2 and Proposition
3.1 �

Proof of Proposition 3.1. Suppose, all cubes in Y have dimension at most n.
We start by showing that FG ⊂ HYP. Let ξ ∈ X and Uo,R(ξ) an element
of the neighbourhood basis of FG. Denote the geodesic representative of
ξ starting at o by γ. Let (hi)i be the sequence of hyperplanes crossed by
γ ordered in the order they are crossed by γ. We find a constant Dξ such
that the geodesic representative of ξ starting at o is Dξ-contracting. Denote
κ := κ(Dξ, 1, 0). By [CH17], we find m ∈ N, r > 0 and a subsequence (hij )j
of (hi)i consisting of pairwise disjoint,m-strongly separated hyperplanes such
that d(hij ∩ γ, hij+1 ∩ γ) < r. Let hiN be the first hyperplane in (hij )j such
that N > 1 and d(o, hij ) > R+ C, where

C := 4
√
n(m+

√
nr) + 8κ.

Consider the basis-element Uo,hiN+2
. Clearly, ξ ∈ Uo,hiN+2

. We claim that
Uo,hiN+2

⊂ Uo,R(ξ). Let η ∈ Uo,hiN+2
and let β be the geodesic representa-

tive of η starting at o. Note that, since β is a geodesic, it can cross every
hyperplane at most once. Since η ∈ Uo,hiN+2

, β has to cross hiN , hiN+1 and
hiN+2 at some point.

Denote the restrictions of β and γ to the area between hij and hij+1 by βj
and γj respectively. We focus our attention on the restriction of β and γ to
the area between hiN and hiN+2 , i. e. on βN , βN+1, γN and γN+1. We will
estimate the distance between p := γ ∩ hiN+1 and q := β ∩ hiN+1 . Since Y
has uniformly bounded dimension, we can do so by estimating the number
of hyperplanes that separate p from q.

Suppose, k ∈ W(p, q). Since β and γ both start at o, k has to be crossed
by exactly one of them at some point before the two paths cross hiN+1 . There
are three possibilities.
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Figure 2. The graph Γ0 that induces G0 := AΓ0 .

Case 1: Suppose, k intersects neither βN nor γN . Then, k intersects hiN .
Since hiN and hiN+1 are m-strongly separated, there can be at most m-many
such hyperplanes.

Case 2: Suppose, k intersects γN . By assumption, d(γ∩hiN , γ∩hiN+1) < r.
Therefore, there can be at most

√
nr-many such hyperplanes.

Case 3: Suppose, k intersects βN . Focus on the area between hiN+1 and
hiN+2 . Since β is a geodesic, k has to intersect either γN+1 or hiN+2 . Again,
there are at most m+

√
nr-many such hyperplanes.

We conclude that, in total, there are at most 2(m +
√
nr)-many hyper-

planes that separate p from q. Thus, d(p, q) ≤ 2
√
n(m +

√
nr). Lemma

4.6 in [CM18] now implies that, there exists a point q′ ∈ β which is κ-close
to γ�BR(o). This relies on our choice of C which was made specifically
to suit Cashen-Mackays result. This implies that η ∈ Uo,R(ξ). Therefore,
ξ ∈ Uo,kiN ⊂ Uo,R(ξ) which implies that Uo,R(ξ) ∈ HYP.

We are left to show that HYP ⊂ FG. Let h1, . . . , hn be distinct hyper-
planes and ξ ∈ Uo,h1,...,hn . Let γ be the geodesic representative of ξ based at
o. We find a constant Dξ such that γ is Dξ-contracting. Choose R > 0 suffi-
ciently large, such that d(hi, γ�BR(o)) > κ(Dξ, 1, 0) for all i. Such R exists,
since a geodesic γ cannot stay uniformly close to any hyperplane it crosses
(for example because the distance function d(γ(t), β(t)) of two geodesics in
a CAT(0) space is convex). Clearly, ξ ∈ Uo,R(ξ) and we need to show that
Uo,R(ξ) ⊂ Uo,h1,...,hn .

Let η ∈ Uo,R(ξ) and β the geodesic representative of η based at o. Then
there exists a point p ∈ β, such that d(p, γ�BR(o)) ≤ κ(Dξ, 1, 0). In partic-
ular, if γs ∈ γ�BR(o) satisfies d(p, γ) = d(p, γs), then the geodesic δ from p
to γs is completely contained in the κ(Dξ, 1, 0)-neighbourhood of γ�BR(o).
Since d(hi, γ�BR(o)) > κ(Dξ, 1, 0), δ cannot intersect hi for any i. We
conclude that, for all i, hi separates o from p, which implies that β crosses
hi for all i. Therefore, η ∈ Uo,h1,...,hn and ξ ∈ Uo,R(ξ) ⊂ Uo,h1,...,hn , which
completes the proof. �

In contrast to Proposition 3.1, HYP and FQ do not coincide in general.
Consider the right-angled Artin group G0 := AΓ0 induced by the graph
Γ0 depicted in figure 2. Its Salvetti complex can be obtained as follows.
Consider three distinct tori and consider two simple closed curves in each as
depicted in figure 3. Glueing the curves b in the first two tori together and
glueing the curves c in the second two tori together, we obtain the Salvetti
complex of G0. Denote its universal covering by Y0 := YΓ0 .

Proposition 3.3. If X = ∂MY0 for Γ0 as in figure 2, then HYP ( FQ on
X.
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Figure 3. The Croke–Kleiner example

Proposition 3.3. If X = @MY0 for �0 as in figure 2, then HYP ( FQ on
X.

Proof of Proposition 3.3. By [CM18], we know that FG ⇢ FQ, so we are
left to show that HYP 6= FQ. In particular, we need to show that there
exists some neighbourhood Uo,R(⇠) such that there exists no h1, . . . , hn such
that ⇠ 2 Uo,h1,...,hn ⇢ Uo,R(⇠).

We recall a few facts about the space Y0. In [CK00], Croke and Kleiner
showed that Y0 can be written as a union of the following ‘blocks’: Con-
sider two of the tori in the Salvetti complex that are identified along a curve
(i. e. the first and second torus, or the second and third torus). The preimage
of this subspace under the projection from the universal covering is a disjoint
union with each component being isometric to the product of a 4-valent tree
with R. Furthermore, the preimage of any of the three tori is a disjoint union
of 2-dimensional flats. We denote the collection of flats corresponding to the
first torus by A, the collection corresponding to the second torus by B and
the collection corresponding to the third torus by C. The Salvetti complex of
� has four hyperplanes. Denote the collection of preimages of the hyperplane
crossed by the curve a by A, the collection of preimages of the hyperplane
crossed by the curve b by B, the collection of preimages of the hyperplane
crossed by the curve c by C and the collection of preimages of the hyperplane
crossed by the curve d by D. Thus, the collection of hyperplanes in Y0 is the
disjoint union of A, B, C, D.

Before we start with the main construction, we remark that, whenever we
concatenate paths in the following proof, we do not rescale their parametri-
sation. We adjust their parametrisation by time-shift to allow concatenation,
but they remain parametrised by arc-length.

We will introduce a specific point ⇠ 2 @MY0 and find some neighbourhood
Uo,R(⇠) as described above (see also figure (4)). Fix a base point o 2 Y

(0)
0

and choose edges, incident to o, that induce hyperplanes b0 2 B and c1 2 C
respectively. Consider the unique geodesic segment that starts at o, has
length

p
2 and crosses both b0 and c1 at an angle of ⇡

4 (i.e. it crosses the
square spanned by b0 and c1 along the diagonal). Denote this geodesic
segment by �1 and its second endpoint by w1. Note that both endpoints of
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Proof of Proposition 3.3. By [CM18], we know that FG ⊂ FQ, so we are
left to show that HYP 6= FQ. In particular, we need to show that there
exists some neighbourhood Uo,R(ξ) such that there exists no h1, . . . , hn such
that ξ ∈ Uo,h1,...,hn ⊂ Uo,R(ξ).

We recall a few facts about the space Y0. In [CK00], Croke and Kleiner
showed that Y0 can be written as a union of the following ‘blocks’: Con-
sider two of the tori in the Salvetti complex that are identified along a curve
(i. e. the first and second torus, or the second and third torus). The preimage
of this subspace under the projection from the universal covering is a disjoint
union with each component being isometric to the product of a 4-valent tree
with R. Furthermore, the preimage of any of the three tori is a disjoint union
of 2-dimensional flats. We denote the collection of flats corresponding to the
first torus by A, the collection corresponding to the second torus by B and
the collection corresponding to the third torus by C. The Salvetti complex of
Γ has four hyperplanes. Denote the collection of preimages of the hyperplane
crossed by the curve a by A, the collection of preimages of the hyperplane
crossed by the curve b by B, the collection of preimages of the hyperplane
crossed by the curve c by C and the collection of preimages of the hyperplane
crossed by the curve d by D. Thus, the collection of hyperplanes in Y0 is the
disjoint union of A, B, C, D.

Before we start with the main construction, we remark that, whenever we
concatenate paths in the following proof, we do not rescale their parametri-
sation. We adjust their parametrisation by time-shift to allow concatenation,
but they remain parametrised by arc-length.

We will introduce a specific point ξ ∈ ∂MY0 and find some neighbourhood
Uo,R(ξ) as described above (see also figure (4)). Fix a base point o ∈ Y (0)

0
and choose edges, incident to o, that induce hyperplanes b0 ∈ B and c1 ∈ C
respectively. Consider the unique geodesic segment that starts at o, has
length

√
2 and crosses both b0 and c1 at an angle of π

4 (i.e. it crosses the
square spanned by b0 and c1 along the diagonal). Denote this geodesic
segment by γ1 and its second endpoint by w1. Note that both endpoints of
γ1 are vertices in Y0. There exists a unique flat F ∈ B that contains w1.
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The geodesic segment γ1 has to possible geodesic extension of length
√

2 in
F . Choose one of these extensions and denote it by γ2. The endpoints of γ2

are w1 and a point we denote w2.
We continue the construction of γ as follows. Let Fi ⊂ {A,B, C} be the

periodic sequence defined by the period

B, C,B,A,B, C,B,A.
By the construction above, the geodesic segment γ1 is contained in a

flat F1 ∈ F1 and the geodesic segment γ2 is contained in a flat F2 ∈ F2.
Suppose we had constructed geodesic segments γj for 1 ≤ j ≤ i which can
be concatenated to a geodesic segment in Y0. We denote the endpoints of
γj by wj−1 and wj . There exists a unique flat F ∈ Fi+1 that contains the
point wi. The geodesic segment γi has two possible geodesic extensions of
length

√
2 in F . Choose one of these extensions and denote it by γi+1. The

endpoints of γi+1 are wi and a point we denote wi+1.
This construction provides us with a geodesic ray γ in Y0, which is the

concatenation of all the γi. Due to the form of the sequence Fi, γ stays in
each block for at most distance 3

√
2. Therefore, γ is sublinearly contracting

and defines a point ξ ∈ ∂MY0. Note that γ crosses at most three hyperplanes
in every flat it crosses.

The image of γ crosses an infinite collection of flats (Fl)l, with Fl ∈
A ∪ B ∪ C ordered in the way they are crossed by γ. Indeed, γl = γ ∩ Fl,
where we identify any path segment with its image.

Let R � 0 and pick any finite collection of hyperplanes h1, . . . , hn each
of which is separating o from ξ. Since γ is contracting, we find a sequence
of strongly separated hyperplanes (kj)j as before. In particular, we find a
hyperplane k := kN such that for all i, k separates ξ from hi. We have
ξ ∈ Uo,k ⊂ Uo,h1,...,hn . We will construct a (8

√
2, 1)-quasi-geodesic β′k such

that [β′k] ∈ Uo,k�Uo,R(ξ).
The main step of the proof is the construction of an auxiliary quasi-

geodesic β, which will be a path in the 1-skeleton of Y0, parametrized by
unit speed on every edge. In particular, it will be determined completely
by the ordered sequence of hyperplanes it crosses. We will write β as the
concatenation of paths (βl)l∈N, where βl ⊂ Fl. In what follows, whenever we
consider a path p : [a, b]→ Y0, we will refer to p(b) as its endpoint.

Choose an integer 3 < ∆ < R. Let b′0 ∈ B be the unique hyperplane in B
that is not equal to b0 and has minimal distance to o. Consider the geodesic
starting at o and crossing through b′0 and extend this geodesic by ∆+3 many
steps in the flat F1. Denote this geodesic line by p1. Define q1 to be the
geodesic from the endpoint of p1 to its closest point projection onto F1 ∩F2.
Note that this geodesic is completely contained in the 1-skeleton of Y0, as the
endpoint of p1 is separated from F1 ∩ F2 only by hyperplanes in C. Denote
β1 := p1 ∗ q1. Note that β1 is a (

√
2, 0)-quasi-geodesic because the l1-metric

on the euclidean plane is
√

2-bi-Lipschitz-equivalent to the euclidean metric
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o γβ

Figure 4. The concatenation β of the quasi-geodesics βk
(red) and the geodesic γ (black). The scale of β is reduced
for presentation.

on the plane. Further, the endpoint of β1 is separated from γ by ∆ + 3-
many hyperplanes that pairwise don’t intersect. Therefore, the distance of
the endpoint of β1 to any point in γ is at least ∆ + 3.

We now provide the general definition of βl by an inductive procedure.
Suppose, we have defined (

√
2, 0)-quasi-geodesics βk ⊂ Fk for all k < l.

Additionally, suppose that for all 1 < k < l, the distance of any point in βk
to any point in γ is at least ∆. Further, assume that for all 1 ≤ k < l, the
endpoint of βk lies in Fk ∩ Fk+1 and has distance at least ∆ + 3 from any
point in γ.

For all k ≥ 1, denote the endpoint of βk by vk and recall that the endpoint
of γk is denoted by wk. Define

Ml := d(vl−1, Fl ∩ Fl+1) = #{hyperplanes separating vl−1 from Fl ∩ Fl+1}
and

Nl := max

(
∆ + 3, 5Ml, 2

∑
k<l

l(βk)

)
.

Note that this implies

(1)
Nl

2
−Ml ≥

Nl

4
+
Ml

8
.

We distinguish between three cases:

Case 1: If Fl ∈ A, then Fl−1 ∈ B. In this case, the 1-dimensional cubically
embedded line Fl−1 ∩Fl is only crossed by hyperplanes in B. Since vl−1 and
wl−1 both lie in Fl−1 ∩ Fl, we conclude that they are only separated by
hyperplanes in B. In particular, since the distance between them has to be
at least ∆ + 3 by the assumption of the induction, there are at least ∆ + 3
many hyperplanes separating vl−1 and wl−1.
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By construction, γl crosses one hyperplane in B and one hyperplane in A.
Define pl to first cross the unique hyperplane in B adjacent to vl−1 that does
not separate vl−1 from wl−1. Extend pl by Nl − 1 many steps in Fl. Define
ql to be the path starting at the endpoint of pl and crossing the hyperplane
in A that is crossed by γl. Define βl := pl ∗ ql.

We now prove that βl satisfies the assumptions of the induction. Clearly,
it is a (

√
2, 0)-quasi-geodesic in Fl. Further, since γ crosses at most three

hyperplane in every flat and vl−1 and wl−1 are separated by at least ∆ + 3
many hyperplanes, any point in βl is separated by at least ∆ many hyper-
planes in B from any point in γ. Since no two hyperplanes in B intersect,
this implies that the distance between any point in βl and any point in γ is
at least ∆. Further, the endpoint of βl is separated by ∆+3 many additional
pairwise non-intersecting hyperplanes from any point in γ. We conclude that
the distance of the endpoint of βl to any point in γ is at least ∆ + 3.

Finally, we show that the endpoint of βl lies in Fl ∩ Fl+1. Since βl starts
in Fl and crosses only hyperplanes that intersect with Fl, it lies in Fl. Given
a vertex v ∈ Fl, it lies in Fl∩Fl+1 if and only if there exists a point w ∈ Fl+1

such that no hyperplane in A separates v from w. This is the case for the
endpoints vl, wl of βl and γl and we know that wl lies in Fl+1 by definition
of γ and Fl. We conclude that βl satisfies all the assumption of the induction.

Case 2: If Fl ∈ C, then we do the same thing as in case 1, except that the
roles of the sets A and B are played by the sets D and C respectively.

Case 3: If Fl ∈ B, assume without loss of generality that Fl−1 ∈ A. Again,
the case of Fl−1 ∈ C can be obtained by role-swapping of A with D and of
B with C. We know that vl−1, wl−1 ∈ Fl−1 ∩ Fl and they are separated
by at least ∆ + 3 many hyperplanes in B. By construction of γ, there is a
unique hyperplane in C that is adjacent to wl−1 and is not crossed by γl.
Define pl to start at wl−1, to cross this unique hyperplane and extend it by
Nl− 1 many steps in Fl. Define ql to start at the endpoint of pl and to cross
all hyperplanes in B that separate that endpoint from the line Fl ∩ Fl+1.
Note that these are all hyperplanes that separate the endpoint of pl from
Fl ∩ Fl+1, as all hyperplanes crossed by pl are also crossed by Fl ∩ Fl+1.
Define βl := pl ∗ ql.

Again, we show that βl satisfies all the assumption of the induction. It is
a (
√

2, 0)-quasi-geodesic by construction. By the same argument as before,
there are ∆-many hyperplanes in B that separate any point of pl from any
point on γ. Furthermore, there are Nl ≥ ∆ + 3 many hyperplanes that
separate any point on ql from any point on γ, specifically, the hyperplanes
crossed by pl. We conclude that βl satisfies the assumption of the induction.

Note that for any l > 1, there is no hyperplane crossed by both pl−1

and pl. Together with the fact that ql−1 never crosses hyperplanes of the
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same type as pl−1 and pl, this implies in particular that pl−1 ∗ ql−1 ∗ pl is a
combinatorial geodesic.

Claim 1. The path β is an (8
√

2, 1)-quasi-geodesic.

Before we prove the claim, we point out that β is not contracting. We
will construct suitable contracting paths β′k from it, once we have proven the
claim.

Proof of Claim. Let 0 ≤ t < s. Since β is a concatenation of geodesic lines,
we have d(β(t), β(s)) ≤ |s − t|. We are left to show that d(β(t), β(s)) ≥

1
8
√

2
|s − t| − 1. Suppose, β(s) ∈ Fl. Then β(t) ∈ Fk for some k ≤ l. There

are three cases.

Case 1: If k = l, we find t′, s′ such that t− s = t′ − s′ and β(t) = βl(t
′),

β(s) = βl(s
′). We have already seen that βl is a (

√
2, 0)-quasi-geodesic by

construction.
Case 2: Suppose k = l − 1. We first note that β is a concatenation of

paths βl, which in turn are concatenations of geodesic lines pl, ql that lie in
the 1-skeleton of Y0. Each of these geodesic lines crosses hyperplanes from
only one of the four families A, B, C, D. If we write down for every geodesic
line, which type of hyperplanes it crosses, in order of concatenation, we get
a periodic sequence with period

C,B,C,D,B,C,B,A.

In other words, p1 crosses hyperplanes in C, q1 crosses hyperplanes in B,
p2 crosses hyperplanes in C, q2 crosses hyperplanes in D, etc. following the
periodic sequence described above.

We will distinguish between several subcases.
Case 2a: Suppose, β(s) ∈ pl and β(t) ∈ ql−1. By construction, the con-

catenation ql−1 ∗ pl is either a geodesic, or contained inside the 1-skeleton of
the flat Fl−1, hence a (

√
2, 0)-quasi-geodesic.

Case 2b: Suppose, β(s) ∈ pl and β(t) ∈ pl−1. As we noted before stating
the claim, the concatenation pl−1 ∗ ql−1 ∗ pl is a combinatorial geodesic for
all l > 1. Thus, we have

d(β(s), β(t)) ≥ 1√
2
dl1(β(s), β(t))

=
1√
2
|s− t|.

Case 2c: Suppose, β(s) ∈ ql and β(t) ∈ ql−1. By checking the type of
hyperplanes crossed by ql−1, pl and ql, we see that ql−1 ∗ pl ∗ ql is a combina-
torial geodesic and thus a (

√
2, 0)-quasi-geodesic by the same argument as

in Case 2b.
Case 2d: Suppose, β(s) ∈ ql and β(t) ∈ pl−1. By definition of Nl, we

know that pl crosses at least twice as many hyperplanes as all βk for k < l
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together. We conclude that β(s) is separated from β(t) by at least Nl
2 −Ml

many hyperplanes and |s− t| ≤ 2Nl +Ml. Therefore, using equation (1), we
have

d(β(s), β(t)) ≥ 1√
2
dl1(β(s), β(t))

≥ 1√
2

(
Nl

2
−Ml

)
≥ 1

8
√

2
(2Nl +Ml)

≥ 1

8
√

2
|s− t|.

Combining cases 2a-d, we conclude that pl−1 ∗ ql−1 ∗ pl ∗ ql is a (8
√

2, 0)-
quasi-geodesic.

Case 3: Suppose k < l − 1. If β(s) ∈ ql, the argument from Case 2d
applies and thus, the (8

√
2, 0)-quasi-geodesic inequalities are satisfied.

If β(s) ∈ pl, let β(T ) be the end point of pl−1. Clearly, β(s) and β(T )
are separated by at least s − T − 1

2 many hyperplanes. Furthermore, pl−1

provides at least Nl−1

2 many additional hyperplanes that separate β(s) from
any β(t) ∈ βk for k < l − 1, as pl−1, ql−1 and pl cross mutually disjoint
families of hyperplanes. Using the fact that |T − t| ≤ 2Nl−1 by definition of
Nl−1, we conclude that

d(β(s), β(t)) ≥ 1√
2
dl1(β(s), β(t))

≥ 1√
2

(
Nl−1

2
+ s− T − 1

2

)
≥ 1

8
√

2

∣∣∣∣T − t+ s− T − 1

2

∣∣∣∣
=

1

8
√

2
|s− t| − 1

16
√

2
.

We conclude that β satisfies the (8
√

2, 1)-quasi-geodesic inequalities for
any 0 ≤ t ≤ s, which concludes the proof of the claim �

We now return to our open neighbourhood Uo,k of ξ. Since every hyper-
plane in Y0 is contained in one block of Y0, it can either intersect flats in
A∪B or in B∪C. Without loss of generality, k only intersects flats in A∪B.
Since γ crosses infinitely many flats of all three types, there has to be an L,
such that k separates o from FL. In particular, the concatenation β1∗· · ·∗βL
crosses k. We can extend this concatenation to a contracting (8

√
2, 1)-quasi-

geodesic β′k, which provides us with a point ηk := [β′k] ∈ ∂MY0. Note that
[β′k] 6= [β], in fact, β is not a contracting quasi-geodesic. However, β′k is a
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quasi-geodesic with the property that β′k ∩N∆(γ�BR(o)) = ∅ since R > ∆.
If we choose ∆ > κ(ρξ, 8

√
2, 1), we conclude that ηk ∈ Uo,k�Uo,R(ξ). In

summary: Given R � κ(ρξ, 8
√

2, 1) and any hyperplane k, we have found
a point ηk = [β′k] ∈ Uo,k�Uo,R(ξ). This implies that HYP 6= FQ, which
completes the proof of the proposition. �

Remark 3.4. Note that we can chose ∆ rather freely in our construc-
tion. In particular, it is not possible to adapt the number κ(ρ,K,C) in
Cashen-Mackays definition of fellow-traveling to make the constructed paths
β′k fellow-travel along γ.

Remark 3.5. The construction in the proof of Proposition 3.3 can be done
for most points in the Morse boundary of Y0, although the construction
becomes more messy, as the geodesic γ becomes more complicated. We see
that FQ and FG provide different open neighbourhoods around nearly every
point of ∂MY0.

4. Defining a metric on the Morse boundary of Right-angled
Artin groups

Let Γ be a finite graph with no multiple edges and no self-loops for the
remainder of this section. Denote by AΓ the induced RAAG and by YΓ the
universal covering of the Salvetti complex. More generally, let Y be a locally
finite CAT(0) cube complex satisfying the following property:

(♦) For every Morse geodesic ray γ, there exists r ≥ 0 and an infinite
family of strongly separated hyperplanes hi crossed by γ, such that
for pi := γ ∩ hi we have d(pi, pi+1) ≤ r.

We will show that, whenever Y satisfies (♦), the topology HYP on its
Morse boundary is metrizable and has a nice description. The metric will
depend on the choice of a base point o, so we will obtain a family of metrics
do. In fact, these metrics even induce different cross ratios on the Morse
boundary, as we will see further below.

Before we define the actual metric, recall the following fact, which is an
essential part of the proof of the Urysohn metrization theorem (cf. [Roy88]).

Let (Y, T ) be a topological space, {Un} a countable basis of T and fn :
Y → [0, e−n] continuous maps such that supp(fn) ⊂ Un and for every y ∈ Y ,
U ∈ T with y ∈ U there exists some fn with fn(y) 6= 0 and supp(fn) ⊂ U .
Then the map

d(x, y) := sup
n

(|fn(x)− fn(y)|)
is a metric and its induced topology is equal to T . In fact, we can even have

finitely many sets Un,1, . . . , Un,ln and finitely many functions fn,1, . . . fn,ln :
Y → [0, e−n] with the properties above and the construction still yields a
metric that induces T . We will explicitly choose the sets Un and construct
functions fn. We start by proving certain properties that will justify our
choice.
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Lemma 4.1. If Y is a locally finite CAT(0) cube complex satisfying (♦),
then the family {Uo,k}k∈W(Y ) is a countable basis of HYP. Furthermore,
Uo,k is open and closed in HYP.
Proof. The countability of {Uo,k}k follows from the local finiteness of Y .
Next, we will show that {Uo,k}k is a basis. Let h1, . . . , hn be a collection
of hyperplanes such that Uo,h1,...,hn 6= ∅. Let ξ ∈ Uo,h1,...,hn and γ ∈ ξ a
geodesic representative based at o. By Proposition 2.9, we find a sequence
of strongly separated hyperplanes (ki)i that are crossed by γ. Consider the
first hyperplane ki that is crossed by γ after it has crossed all hj . Since all ki
are strongly separated, ki+1 cannot cross hj for any j and thus, ξ ∈ Uo,ki+1

⊂
Uo,h1,...,hn . We conclude that {Uo,k}k is a basis.

Finally, we show that Uo,k is closed inHYP. Let ξ ∈ ∂MY�Uo,k and γ ∈ ξ
the geodesic representative based at o. There exists a sequence of strongly
separated hyperplanes (ki)i that is crossed by γ. Since γ does not cross k,
there can be at most one ki that crosses k. Let kI be the first hyperplane in
(ki)i after the one that crosses k (pick any kI if no ki crosses k). We have
that ξ ∈ Uo,kI ⊂ ∂MY�Uo,k. We conclude that Uo,k is closed. �

Lemma 4.1 allows us to make the construction from Urysohns metrization
theorem very explicit. We can choose {Uo,k}k as our countable basis and
define

fk(ξ) :=

{
e−#W(o,k) if ξ ∈ Uo,k,
0 else

Recall that W(o, k) is the set of hyperplanes that separates o from k.
Then, by the proof of Urysohns metrization theorem,

do(ξ, η) := sup
k

(|fk(ξ)− fk(η)|)

is a metric and its induced topology is equal to the topology generated by
{Uo,k}k, i. e. HYP.

There is a more convenient way to describe do. Let ξ, η ∈ ∂MY , o ∈ Y (0).
Since fk(ξ) ∈ {0, e−#W(o,k)}, we see that fk(ξ)− fk(η) = 0 unless one of the
two lies in Uo,k and the other one does not. Therefore, if we define

W(ξ, η) := {h ∈ W(Y )| Exactly one geodesic representative of ξ and η based at o crosses h},
we have

do(ξ, η) = e− inf{#W(o,k)|k∈W(ξ,η)}.

To abbreviate, we define

[ξ|η]o := inf(#W(o, k)|k ∈ W(ξ, η))

and obtain
do(ξ, η) = e−[ξ|η]o .
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We use the expression [ξ|η]o as an analogue of the Gromov product in hy-
perbolic spaces. Note that [ξ|η]o is very different from the product (ξ|η)o :=
#W(o, {ξ, η}) which was used in [BFIM18].

We define the cross ratio of four points w, x, y, z with respect to [·|·]o by

cro(w, x, y, z) := [w|x]o + [y|z]o − [w|y]o − [x|z]o.
In addition, we define

[w, x, y, z] := (w|x)o + (y|z)o − (w|y)o − (x|z)o,
which is the base point-independent cross ratio introduced in [BFIM18].

Cross ratios often appear on boundaries in a very natural way (cf. [Pau96]
and [BFIM18]). One particular desirable feature of cross ratios on boundaries
is that they should be independent of the choice of any base point (in contrast
to the construction of metrics). The example below shows us that:

1) The difference |cro(·, ·, ·, ·)− [·, ·, ·, ·]| is unbounded.
2) The cross ratio cro is not independent of the choice of o.

Example 4.2. Consider the ‘tree of 3-dimensional flats’ that corresponds
to the RAAG

Z3 ∗ Z = 〈a, b, c, d|[a, b] = [b, c] = [a, c] = 1〉.
Denote the Salvetti complex that belongs to the graph Γ = K3 ∪ {d} by

Y . The Cayley-graph of the representation given above can be embedded
into Y by an embedding that respects the cube complex structure. Let o be
the image of 1 ∈ Z3 ∗ Z under a chosen embedding. The choice of o allows
us to represent elements in the visual boundary by infinite words in a, b, c,
d and their inverses. Put

wn := and∞,

xn := anbd∞,

y := a−1b−1d∞,

z := a−1b−1cd∞.

Clearly,

[wn|xn]1 = [wn|y]1 = [wn|z]1 = [xn|z]1 = [y|z]1 = 0,

while

(wn|xn)1 = n

(wn|y)1 = (wn|z)1 = (xn|z)1 = (y|z)1 = 0.

We see that

cr1(wn, xn, y, z) = 0

[wn, xn, y, z] = n.
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This proves 1). We see that the metric do provides us with a cross ratio
that is very different from the cross ratio introduced in [BFIM18]. Further-
more, changing the base point also changes the cross ratio cro. For example,

crc−m(wn, xn, y, z) = 0 +m− 0− 0 = m 6= cr1(wn, xn, y, z).

This proves 2).

5. HYP and the visual topology

In this section, we will connect the topologiesHYP and FG with the visual
topology on the Morse boundary of CAT(0) cube complexes and the quotient
topology coming from the Roller boundary. All together, this will provide
us with a new way to tackle the question whether the subspace topology of
the visual topology on the Morse boundary is a quasi-isometry-invariant. In
particular, our understanding of various cubulable groups provides us with
many examples to study this question with. We start by noting a result by
Cashen-Mackay and one by Beyrer-Fioravanti.

Lemma 5.1 (Proposition 7.3 from [CM18]). Let Y be a CAT(0) space. Then
FG agrees with the subspace topology induced by the visual topology on ∂MY .

If Y is a locally finite CAT(0) cube complex, the Roller boundary also
induces a topology on ∂MY . Specifically, consider the projection map Φ :
∂R,MY → ∂MY introduced in section 2.2. The Roller boundary induces a
subspace topology on ∂R,MY . The following result is part of Theorem 3.10
in [BF18a].

Theorem 5.2 ([BF18a]). Let Y be a uniformly locally finite CAT(0) cube
complex and equip ∂MY with the visual topology. Then the map Φ : ∂R,MY →
∂MY is surjective and continuous.

Furthermore, the map φ : ∂R,MY� ∼ → ∂MY where asymptotic points in
∂R,MY are identified and the quotient is equipped with the quotient topology,
is a homeomorphism.

The topology on the Roller boundary used in this Theorem is connected
to several rigidity results (cf. [BFIM18], [BF18b]). However, these rigidity
results use the cross ratio [·, ·, ·, ·], which is different from cro, as we have
seen in section 4.

Combining Theorem 1.1, Lemma 5.1 and Theorem 5.2, we obtain Corol-
lary 1.3. This gives us a new approach to tackle the question, whether the
Morse boundary with the visual topology is a quasi-isometry invariant for
uniformly locally finite CAT(0) cube complexes that admit a cocompact
action by isometries. For spaces, where FG = FQ, this follows from the
quasi-isometry invariance of FQ. Theorem 1.2 provides an example, where
this is not the case (and suggests the existence of many others). We finish
by presenting the naive attempt to prove quasi-isometry invariance of the
topology HYP and by illustrating an obstruction to this invariance.
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h1hl

ξ

η1 η2 η3

o
F

f(ξ)

f(η1)
f(η2)f(η3)

k′

Figure 5. Is there a quasi-isometry F such that the images
of fellow-traveling, contracting geodesics look like this?

Let Y , Y ′ be two CAT(0) cube complexes with dimension uniformly
bounded by n, X and X ′ their respective Morse boundaries, F : Y → Y ′ a
(K,C)-quasi-isometry between them and f : X → X ′ the induced bijection
of the Morse boundaries. Pick a base point o ∈ Y and let o′ be a vertex
closest to F (o). Let k′ be a hyperplane in Y ′ inducing a open set Uo′,k′ ⊂ X ′
and suppose, f(ξ) = ζ ∈ Uo′,k′ . To prove continuity of f , we need to find
hyperplanes h1, . . . , hl such that ξ ∈ Uo,h1,...,hl and f(Uo,h1,...,hl) ⊂ Uo′,k′ .

Consider the unique geodesic representative γ of ξ based at o. Concate-
nating the geodesic segment from o′ to F (o) with F ◦ γ provides us with a
(K,C + 1

2

√
n)-quasi-geodesic representative of f(ξ) which – by assumption

– crosses the hyperplane k′. We need to show that for η ∈ Uo,h1,...,hl , the
geodesic representative of f(η) based at o′ crosses k′. For this, consider the
geodesic representative δ of η in Y based at o. Since γ is Morse, we can
choose h1, . . . , hl such that for all η ∈ Uo,h1,...,hl its geodesic representative δ
stays close to γ for a long distance. While this implies that the image F ◦ δ
crosses the hyperplane k′ (if δ and γ fellow-travel for sufficiently long), it
is not obvious at all that F ◦ δ does not travel back and crosses k′ again,
implying that the geodesic representative of f(η) does not cross k′ at all (cf.
Figure 5). Note that, if F ◦ δ does travel back, it cannot stay close to F ◦ γ
while doing so, as it is a quasi-geodesic whose constants are controlled by F .

Proving that f is continuous proves that h1, . . . , hl can be chosen such
that this kind of back-traveling does not occur. A quasi-isometry that ex-
hibits such back-traveling would provide a counter-example to quasi-isometry
invariance. Thus, we finish with the following

Question. Is there a quasi-isometry between ‘nice’ CAT(0) cube complexes
displaying the ‘back-traveling’ described above?
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